A Learning Approach for Low-Complexity Optimization of Energy Efficiency in Multi-Carrier Wireless Networks

نویسندگان

  • Salvatore D'Oro
  • Alessio Zappone
  • Sergio Palazzo
  • Marco Lops
چکیده

This paper proposes computationally efficient algorithms to maximize the energy efficiency in multi-carrier wireless interference networks, by a suitable allocation of the system radio resources, namely the transmit powers and subcarrier assignment. The problem is formulated as the maximization of the system global energy efficiency (GEE) subject to both maximum power and minimum rate constraints. This leads to a challenging non-convex fractional problem, which is tackled through an interplay of fractional programming, learning, and game theory. The proposed algorithmic framework is provably convergent and has a complexity linear in both the number of users and subcarriers, whereas other available solutions can only guarantee a polynomial complexity in the number of users and subcarriers. Numerical results show that the proposed method performs similarly as other, more complex, algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms

Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...

متن کامل

Energy Efficiency and Reliability in Underwater Wireless Sensor Networks Using Cuckoo Optimizer Algorithm

Energy efficiency and reliability are widely understood to be one of the dominant considerations for Underwater Wireless Sensor Networks (UWSNs). In this paper, in order to maintain energy efficiency and reliability in a UWSN, Cuckoo Optimization Algorithm (COA) is adopted that is a combination of three techniques of geo-routing, multi-path routing, and Duty-Cycle mechanism. In the proposed alg...

متن کامل

Asymptotic Close to Optimal Resource Allocation in Centralized Multi-band Wireless Networks

This paper concerns sub-channel allocation in multi-user wireless networks with a view to increasing the network throughput. It is assumed there are some sub-channels to be equally divided among active links, such that the total sum rate increases, where it is assumed each link is subject to a maximum transmit power constraint. This problem is found to be a non-convex optimization problem and i...

متن کامل

A JOINT DUTY CYCLE SCHEDULING AND ENERGY AWARE ROUTING APPROACH BASED ON EVOLUTIONARY GAME FOR WIRELESS SENSOR NETWORKS

Network throughput and energy conservation are two conflicting important performance metrics for wireless sensor networks. Since these two objectives are in conflict with each other, it is difficult to achieve them simultaneously. In this paper, a joint duty cycle scheduling and energy aware routing approach is proposed based on evolutionary game theory which is called DREG. Making a trade-off ...

متن کامل

HYREP: A Hybrid Low-Power Protocol for Wireless Sensor Networks

In this paper, a new hybrid routing protocol is presented for low power Wireless Sensor Networks (WSNs). The new system uses an integrated piezoelectric energy harvester to increase the network lifetime. Power dissipation is one of the most important factors affecting lifetime of a WSN. An innovative cluster head selection technique using Cuckoo optimization algorithm has been used in the desig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.09591  شماره 

صفحات  -

تاریخ انتشار 2018